Loading...

Course Description

Simulation is about quantifying the outcome of specific "what if" questions. What if the average demand for tickets on a 150-seat aircraft is actually 200? What if people who have purchased a ticket don't show up? What if we offered a different number, or economy and first-class tickets? Perhaps most importantly, what effect do these "what if" scenarios have on total revenue?

As you might guess, many "what if" questions in the real world are fundamentally uncertain; there is no deterministic formula for predicting exactly how many people will not show up for a given flight. You can, however, use historical data to estimate no-show probabilities. Once you conclude that uncertainty plays an important part in your problem, it may be that you will have to turn to a probabilistic simulation. Running many replications of the simulation will then help you statistically analyze the system's behavior and assess the effects of different design choices.

In this course, you will explore the intricacies of designing and analyzing probabilistic simulations. You will also run simulations using packages in the free and open-source statistical programming language R to solve real-world logistical business problems. The focus will be on making these methods accessible for you in your own work.

You are required to have completed the following courses or have equivalent experience before taking this course:

  • Understanding Data Analytics
  • Finding Patterns in Data: Association Rules, PCA, and Factor Analysis
  • Finding Patterns in Data: Cluster and Hotspot Analysis
  • Regression Analysis and Discrete Choice Models
  • Supervised Learning Techniques
  • Neural Networks and Machine Learning
  • Making Data-Driven Recommendations Using Optimization

Faculty Author

Linda Nozick

Benefits to the Learner

  • Develop skills in discrete event simulation using R
  • Recognize what an agent-based simulation is and how it compares to a discrete event simulation
  • Use variance reduction techniques

Target Audience

  • Current and aspiring data scientists
  • Analysts
  • Engineers
  • Researchers
  • Technical managers
Loading...
Enroll Now - Select a section to enroll in
Type
2 week
Dates
Jun 04, 2025 to Jun 17, 2025
Total Number of Hours
20.0
Course Fee(s)
Standard Price $1,199.00
Type
2 week
Dates
Jun 18, 2025 to Jul 01, 2025
Total Number of Hours
20.0
Course Fee(s)
Standard Price $1,199.00
Type
2 week
Dates
Aug 13, 2025 to Aug 26, 2025
Total Number of Hours
20.0
Course Fee(s)
Standard Price $1,199.00
Type
2 week
Dates
Oct 22, 2025 to Nov 04, 2025
Total Number of Hours
20.0
Course Fee(s)
Standard Price $1,199.00
Type
2 week
Dates
Dec 31, 2025 to Jan 13, 2026
Total Number of Hours
20.0
Course Fee(s)
Standard Price $1,199.00
Required fields are indicated by .